Mechanism of targeting the mTOR pathway to regulate ferroptosis in NSCLC with different EGFR mutations.

Chunjiao Wu,Rui Zhong, Tianxue Wei, Yulong Jin, Chunying He,Hui Li,Ying Cheng

Oncology letters(2024)

引用 0|浏览1
暂无评分
摘要
Patients with non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR)-activating mutations can be treated with EGFR-tyrosine kinase inhibitors (TKIs). Although EGFR-TKI-targeted drugs bring survival promotion in patients with EGFR mutations, drug resistance is inevitable, so it is urgent to explore new treatments to overcome drug resistance. In addition, wild-type EGFR lacks targeted drugs, and new targeted therapies need to be explored. Ferroptosis is a key research direction for overcoming drug resistance. However, the role and mechanism of regulating ferroptosis in different EGFR-mutant NSCLC types remains unclear. In the present study, H1975 (EGFR T790M/L858R mutant), A549 (EGFR wild-type) and H3255 (EGFR L858R mutant) NSCLC cell lines were used. The expression of ferroptosis markers in these cell lines was detected using western blotting and reverse transcription-quantitative PCR. Cell viability was determined using the MTT assay and reactive oxygen species (ROS) levels were measured using flow cytometry. The results showed that, compared with EGFR wild-type/sensitive mutant cells, EGFR-resistant mutant cells were more sensitive to the ferroptosis inducer, erastin. Furthermore, the mammalian target of rapamycin (mTOR) inhibitor, everolimus (RAD001), induced cell death in all three cell lines in a dose-dependent manner. The ferroptosis inhibitor, ferrostatin-1, could reverse cell death in EGFR-resistant mutant and EGFR wild-type cells induced by RAD001, but could not reverse cell death in EGFR-sensitive mutant cells. Compared with EGFR wild-type/sensitive mutant cells, EGFR-resistant mutant cells were more sensitive to RAD001 combined with erastin. In addition, a high-dose of RAD001 reduced the expression levels of ferritin heavy-chain polypeptide 1 (FTH1), glutathione peroxidase 4 (GPX4) and ferroportin and significantly increased ROS and malondialdehyde (MDA) levels in EGFR-resistant mutant and EGFR wild-type cells. In the present study, GPX4 inhibitor only or combined with RAD001 inhibited the AKT/mTOR pathway in EGFR-resistant mutant cells. Therefore, the results of the present study suggested that inhibition of the mTOR pathway may downregulate the expression of ferroptosis-related proteins in EGFR-resistant and EGFR wild-type NSCLC cells, increase the ROS and MDA levels and ultimately induce ferroptosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要