Highly Permeable Nanoparticles Achieve Efficient Tumor Treatment through Oxygen‐Independent Photonic Thermodynamic Therapy

Jian Xiao,Chun Wang,Yu Zhao, Xianghui Cao,Qiushi Li, Xueyao Wu,Yang Liu

Advanced Functional Materials(2024)

引用 0|浏览1
暂无评分
摘要
AbstractPhotodynamic therapy (PDT) represents a promising strategy for tumor treatment. However, the development of PDT‐based antitumor therapies faces challenges stemming from the hypoxic nature of the tumor microenvironment and the limited penetration of photosensitizers. This study presents a novel class of antitumor nanoparticles, designated as ARLN‐FP, engineered to penetrate tumor tissues deeply and inhibit tumor growth through the generation of oxygen‐independent free radicals. With the encapsulation of IR780 and dimethyl 2,2′‐azobis(2‐methylpropionate) (AIBME) in the core of ARLN‐FP, near‐infrared (NIR) laser irradiation of ARLN‐FP with induced heat generation, which subsequentially led to the decomposition of AIBME and the production of free radicals without relying on oxygen. In vitro studies indicated that ARLN‐FP penetrated more than 100 µm into multicellular tumor spheroids, demonstrating its enhanced tissue permeability. Animal studies confirmed the anti‐tumor effects of ARLN‐FP‐mediated photonic thermodynamic therapy, where the oxygen‐independent radical formation contributed to successful tumor eradication, evidenced by a significant tumor inhibition rate of 90.8% after 22 days. This research presents a feasible method to overcome the limitations of traditional oxygen‐dependent photodynamic therapies, which offers a new approach to developing nanomedicines to overcome resistance in deep and hypoxic tumor regions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要