Interfacial chemistry of anode/electrolyte interface for rechargeable magnesium batteries

Journal of Magnesium and Alloys(2024)

引用 0|浏览2
暂无评分
摘要
Rechargeable magnesium batteries (RMBs), as a low-cost, high-safety and high-energy storage technology, have attracted tremendous attention in large-scale energy storage applications. However, the key anode/electrolyte interfacial issues, including surface passivation, uneven Mg plating/stripping, and pulverization after cycling still result in a large overpotential, short cycling life, poor power density, and possible safety hazards of cells, severely impeding the commercial development of RMBs. In this review, a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized. The design of magnesiophilic substrates, construction of artificial SEI layers, and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface. The key opportunities and challenges in this field are advisedly put forward, and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted. This review provides important references fordeveloping the high-performance and high-safety RMBs.
更多
查看译文
关键词
Rechargeable magnesium batteries,Interfacial chemistry,Anode/electrolyte interface,Mg plating/stripping,Solid-electrolyte interphase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要