Partial substitution of manure increases N2O emissions in the alkaline soil but not acidic soils

Journal of Environmental Management(2024)

引用 0|浏览0
暂无评分
摘要
The fertilization regimes of combining manure with synthetic fertilizer are benefits for crop yields and soil fertility in cropping systems as compared to sole synthetic fertilization, but the responses of nitrous oxide (N2O) emissions to these practices are inconsistent in the literatures. We hypothesized that it is caused by different proportions of nitrogen (N) applied as manure and various soil properties. Here, we conducted a microcosm experiment, and measured the N2O emissions from control (no N) and five manure substitution treatments (supplied 100 mg N kg−1 using the combination of urea with manure) with a range of proportions of N applied as manure (0, 25%, 50%, 75%, and 100%) in three different soil types (fluvo-aquic soil, black soil, and latosol) under aerobic condition. The stimulated effect on N2O emissions was more pronounced after manure application in an alkaline soil with high nitrification rate, due to relatively rapid soil DOC depletion and N mineralization of manure. N2O emissions from partial substitution of urea with manure were significantly higher than manure-only addition under high soil pH due to abundant labile C from manure. However, there was no difference between manure substitution treatments under acid soils. Nitrification inhibitor substantially decreased N2O emissions with increasing soil pH, but it was less effective in mitigating N2O emissions with larger proportion of manure. This is likely due to the slow nitrification under low soil pH, and denitrification derived N2O increased with increasing manure application rate. Collectively, our study shows that the application of manure substitution to alkaline soils requires careful consideration, which might have rapid nitrification potential and hence trigger significant N2O emissions. The knowledge gained in this work will help the decision-makers in optimizing a sound N fertilization regime interacted with soil properties for sustainable crop production and N2O mitigation.
更多
查看译文
关键词
Nitrous oxide (N2O),Manure,Soil pH,Nitrification inhibitor,Microcosm experiment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要