Deep Learning-Based Detection of Human Blastocyst Compartments with Fractal Dimension Estimation

Fractal and Fractional(2024)

引用 0|浏览0
暂无评分
摘要
In vitro fertilization (IVF) is an efficacious form of aided reproduction to deal with infertility. Human embryos are taken from the body, and these are kept in a supervised laboratory atmosphere during the IVF technique until they exhibit blastocyst properties. A human expert manually analyzes the morphometric properties of the blastocyst and its compartments to predict viability through manual microscopic evaluation. A few deep learning-based approaches deal with this task via semantic segmentation, but they are inaccurate and use expensive architecture. To automatically detect the human blastocyst compartments, we propose a parallel stream fusion network (PSF-Net) that performs the semantic segmentation of embryo microscopic images with inexpensive shallow architecture. The PSF-Net has a shallow architecture that combines the benefits of feature aggregation through depth-wise concatenation and element-wise summation, which helps the network to provide accurate detection using 0.7 million trainable parameters only. In addition, we compute fractal dimension estimation for all compartments of the blastocyst, providing medical experts with significant information regarding the distributional characteristics of blastocyst compartments. An open dataset of microscopic images of the human embryo is used to evaluate the proposed approach. The proposed method also demonstrates promising segmentation performance for all compartments of the blastocyst compared with state-of-the-art methods, achieving a mean Jaccard index (MJI) of 87.69%. The effectiveness of PSF-Net architecture is also confirmed with the ablation studies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要