A manufacturable platform for photonic quantum computing

Koen Alexander, Andrea Bahgat, Avishai Benyamini,Dylan Black,Damien Bonneau, Stanley Burgos, Ben Burridge,Geoff Campbell, Gabriel Catalano, Alex Ceballos, Chia-Ming Chang, CJ Chung, Fariba Danesh, Tom Dauer, Michael Davis, Eric Dudley, Ping Er-Xuan, Josep Fargas,Alessandro Farsi, Colleen Fenrich, Jonathan Frazer, Masaya Fukami, Yogeeswaran Ganesan, Gary Gibson,Mercedes Gimeno-Segovia, Sebastian Goeldi, Patrick Goley, Ryan Haislmaier, Sami Halimi, Paul Hansen, Sam Hardy, Jason Horng, Matthew House, Hong Hu, Mehdi Jadidi, Henrik Johansson, Thomas Jones, Vimal Kamineni, Nicholas Kelez, Ravi Koustuban, George Kovall, Peter Krogen, Nikhil Kumar, Yong Liang, Nicholas LiCausi, Dan Llewellyn, Kimberly Lokovic, Michael Lovelady, Vitor Manfrinato, Ann Melnichuk, Mario Souza,Gabriel Mendoza, Brad Moores, Shaunak Mukherjee,Joseph Munns, Francois-Xavier Musalem, Faraz Najafi, Jeremy L. O'Brien, J. Elliott Ortmann,Sunil Pai, Bryan Park,Hsuan-Tung Peng, Nicholas Penthorn, Brennan Peterson, Matt Poush,Geoff J. Pryde, Tarun Ramprasad, Gareth Ray, Angelita Rodriguez, Brian Roxworthy,Terry Rudolph,Dylan J. Saunders,Pete Shadbolt, Deesha Shah, Hyungki Shin, Jake Smith, Ben Sohn,Young-Ik Sohn, Gyeongho Son,Chris Sparrow, Matteo Staffaroni, Camille Stavrakas, Vijay Sukumaran, Davide Tamborini,Mark G. Thompson, Khanh Tran, Mark Triplet, Maryann Tung, Alexey Vert,Mihai D. Vidrighin, Ilya Vorobeichik, Peter Weigel, Mathhew Wingert, Jamie Wooding,Xinran Zhou

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
Whilst holding great promise for low noise, ease of operation and networking, useful photonic quantum computing has been precluded by the need for beyond-state-of-the-art components, manufactured by the millions. Here we introduce a manufacturable platform for quantum computing with photons. We benchmark a set of monolithically-integrated silicon photonics-based modules to generate, manipulate, network, and detect photonic qubits, demonstrating dual-rail photonic qubits with 99.98%± 0.01% state preparation and measurement fidelity, Hong-Ou-Mandel quantum interference between independent photon sources with 99.50%±0.25% visibility, two-qubit fusion with 99.22%±0.12% fidelity, and a chip-to-chip qubit interconnect with 99.72%±0.04% fidelity, not accounting for loss. In addition, we preview a selection of next generation technologies, demonstrating low-loss silicon nitride waveguides and components, fabrication-tolerant photon sources, high-efficiency photon-number-resolving detectors, low-loss chip-to-fiber coupling, and barium titanate electro-optic phase shifters.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要