Investigations on the defect structures for Mn2+ in CdSe nanocrystals and bulk materials and the criterion of occupation for Mn2+ in CdX (X = S, Se, Te) nanocrystals

Guo-Liang Li,Shao-Yi Wu, Kai-Min Fan

MAGNETIC RESONANCE IN CHEMISTRY(2024)

引用 0|浏览0
暂无评分
摘要
The spin Hamiltonian parameters and defect structures are theoretically studied for the substitutional Mn2+ at the core of CdSe nanocrystals and in the bulk materials from the perturbation calculations of spin Hamiltonian parameters for trigonal tetrahedral 3d5 clusters. Both the crystal-field and charge transfer contributions are taken into account in the calculations from the cluster approach. The impurity-ligand bond angles are found to be about 1.84 degrees larger and 0.10 degrees smaller in the CdSe:Mn2+ nanocrystals and bulk materials, respectively, than those (approximate to 109.37 degrees) of the host Cd2+ sites. The quantitative criterion of occupation (at the core or surface) for Mn2+ in CdX (X = S, Se, Te) nanocrystals is presented for the first time based on the inequations of hyperfine structure constants (HSCs). This criterion is well supported by the experimental HSCs data of Mn2+ in CdX nanocrystals. The previous assignments of signals SI as Mn2+ at the core of CdS nanocrystals are renewed as Mn2+ at the surface based on the above criterion. The present studies would be helpful to achieve convenient determination of occupation for Mn2+ impurities in CdX semiconductor nanocrystals by means of spectral (e.g., HSCs) analysis.
更多
查看译文
关键词
CdSe,defect structures,electron paramagnetic resonance (EPR),hyperfine structure constants (HSCs),Mn2+,nanocrystals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要