A robust approach for time-bin encoded photonic quantum information protocols

Simon J. U. White, Emanuele Polino, Farzad Ghafari, Dominick J. Joch, Luis Villegas-Aguilar, Lynden K. Shalm,Varun B. Verma,Marcus Huber,Nora Tischler

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Quantum states encoded in the time-bin degree of freedom of photons represent a fundamental resource for quantum information protocols. Traditional methods for generating and measuring time-bin encoded quantum states face severe challenges due to optical instabilities, complex setups, and timing resolution requirements. Here, we leverage a robust approach based on Hong-Ou-Mandel interference that allows us to circumvent these issues. First, we perform high-fidelity quantum state tomographies of time-bin qubits with a short temporal separation. Then, we certify intrasystem polarization-time entanglement of single photons through a nonclassicality test. Finally, we propose a robust and scalable protocol to generate and measure high-dimensional time-bin quantum states in a single spatial mode. The protocol promises to enable access to high-dimensional states and tasks that are practically inaccessible with standard schemes, thereby advancing fundamental quantum information science and opening applications in quantum communication.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要