Antioxidant and Hypoglycemic Potential of Phytogenic Selenium Nanoparticle- and Light Regime-Mediated In Vitro Caralluma tuberculata Callus Culture Extract

Amir Ali,Zia-ur-Rehman Mashwani,Naveed Iqbal Raja,Sher Mohammad, M. Sheeraz Ahmad, Juan Pedro Luna-Arias

ACS OMEGA(2024)

引用 0|浏览2
暂无评分
摘要
In vitro plant cultures have emerged as a viable source, holding auspicious reservoirs for medicinal applications. This study aims to delineate the antioxidant and hypoglycemic potential of phytosynthesized selenium nanoparticle (SeNP)- and light stress-mediated in vitro callus cultures of Caralluma tuberculata extract. The morphophysicochemical characteristics of biogenic SeNPs were assessed through a combination of analytical techniques, including UV-visible spectrophotometry, scanning electron microscopy, energy-dispersive X-rays, Fourier transform infrared spectrometry, and zeta potential spectroscopy. The antioxidative potential of the callus extract 200 and 800 mu g/mL concentrations was assessed through various tests and exhibited pronounced scavenging potential in reducing power (26.29%), ABTS + scavenging (42.51%), hydrogen peroxide inhibition (37.26%), hydroxyl radical scavenging (40.23%), and phosphomolybdate (71.66%), respectively. To inspect the hypoglycemic capacity of the callus extract, various assays consistently demonstrated a dosage-dependent relationship, with higher concentrations of the callus extract exerting a potent inhibitory impact on the catalytic sites of the alpha-amylase (78.24%), alpha-glucosidase (71.55%), antisucrase (59.24%), and antilipase (74.26%) enzyme activities, glucose uptake by yeast cells at 5, 10, and 25 mmol/L glucose solution (72.18, 60.58 and 69.33%), and glucose adsorption capacity at 5, 10, and 25 mmol/L glucose solution (74.37, 83.55, and 86.49%), respectively. The findings of this study propose selenium NPs and light-stress-mediated in vitro callus cultures of C. tuberculata potentially operating as competitive inhibitors. The outcomes of the study were exceptional and hold promising implications for future medicinal applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要