Redefining FLASH RT: the impact of mean dose rate and dose per pulse in the gastrointestinal tract.

Kevin Liu, Trey Waldrop, Edgardo Aguilar, Nefetiti Mims, Denae Neill,Abagail Delahoussaye,Ziyi Li, David Swanson,Steven H Lin,Albert C Koong,Cullen M Taniguchi, Billy W Loo, Devarati Mitra, Emil Schüler

bioRxiv : the preprint server for biology(2024)

引用 0|浏览3
暂无评分
摘要
Background:The understanding of how varying radiation beam parameter settings affect the induction and magnitude of the FLASH effect remains limited. Purpose:We sought to evaluate how the magnitude of radiation-induced gastrointestinal (GI) toxicity (RIGIT) depends on the interplay between mean dose rate (MDR) and dose per pulse (DPP). Methods:C57BL/6J mice were subjected to total abdominal irradiation (11-14 Gy single fraction) under conventional irradiation (low DPP and low MDR, CONV) and various combinations of DPP and MDR up to ultra-high-dose-rate (UHDR) beam conditions. The effects of DPP were evaluated for DPPs of 1-6 Gy while the total dose and MDR were kept constant; the effects of MDR were evaluated for the range 0.3- 1440 Gy/s while the total dose and DPP were kept constant. RIGIT was quantified in non-tumor-bearing mice through the regenerating crypt assay and survival assessment. Tumor response was evaluated through tumor growth delay. Results:Within each tested total dose using a constant MDR (>100 Gy/s), increasing DPP led to better sparing of regenerating crypts, with a more prominent effect seen at 12 and 14 Gy TAI. However, at fixed DPPs >4 Gy, similar sparing of crypts was demonstrated irrespective of MDR (from 0.3 to 1440 Gy/s). At a fixed high DPP of 4.7 Gy, survival was equivalently improved relative to CONV for all MDRs from 0.3 Gy/s to 104 Gy/s, but at a lower DPP of 0.93 Gy, increasing MDR produced a greater survival effect. We also confirmed that high DPP, regardless of MDR, produced the same magnitude of tumor growth delay relative to CONV using a clinically relevant melanoma mouse model. Conclusions:This study demonstrates the strong influence that the beam parameter settings have on the magnitude of the FLASH effect. Both high DPP and UHDR appeared independently sufficient to produce FLASH sparing of GI toxicity, while isoeffective tumor response was maintained across all conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要