New Insights Optimize Landing Strategies to Reduce Lower Limb Injury Risk.

Cyborg and bionic systems (Washington, D.C.)(2024)

引用 0|浏览2
暂无评分
摘要
Single-leg landing (SL) is often associated with a high injury risk, especially anterior cruciate ligament (ACL) injuries and lateral ankle sprain. This work investigates the relationship between ankle motion patterns (ankle initial contact angle [AICA] and ankle range of motion [AROM]) and the lower limb injury risk during SL, and proposes an optimized landing strategy that can reduce the injury risk. To more realistically revert and simulate the ACL injury mechanics, we developed a knee musculoskeletal model that reverts the ACL ligament to a nonlinear short-term viscoelastic mechanical mechanism (strain rate-dependent) generated by the dense connective tissue as a function of strain. Sixty healthy male subjects were recruited to collect biomechanics data during SL. The correlation analysis was conducted to explore the relationship between AICA, AROM, and peak vertical ground reaction force (PVGRF), joint total energy dissipation (TED), peak ankle knee hip sagittal moment, peak ankle inversion angle (PAIA), and peak ACL force (PAF). AICA exhibits a negative correlation with PVGRF (r = -0.591) and PAF (r = -0.554), and a positive correlation with TED (r = 0.490) and PAIA (r = 0.502). AROM exhibits a positive correlation with TED (r = 0.687) and PAIA (r = 0.600). The results suggested that the appropriate increases in AICA (30° to 40°) and AROM (50° to 70°) may reduce the lower limb injury risk. This study has the potential to offer novel perspectives on the optimized application of landing strategies, thus giving the crucial theoretical basis for decreasing injury risk.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要