Injection Site Matters: A Comparative Analysis of Transpulmonary Thermodilution via Simultaneous Femoral and Jugular Indicator Injections under Veno-Venous Extracorporeal Membrane Oxygenation Therapy.

Journal of clinical medicine(2024)

引用 0|浏览6
暂无评分
摘要
Background: The use of veno-venous extracorporeal membrane oxygenation (vv-ECMO) in acute lung failure has witnessed a notable increase. The PiCCO system is frequently used for advanced hemodynamic monitoring in this cohort. Our study aimed to investigate whether the choice of indicator injection site (jugular vs. femoral) in patients undergoing vv-ECMO therapy affects transpulmonary thermodilution (TPTD) measurements using the PiCCO® device (Pulsion Medical Systems SE, Munich, Germany). Methods: In a retrospective single-center analysis, we compared thermodilution-derived hemodynamic parameters after simultaneous jugular and femoral injections in 28 measurements obtained in two patients with respiratory failure who were undergoing vv-ECMO therapy. Results: Elevated values of the extravascular lung water index (EVLWI), intrathoracic blood volume index (ITBVI) and global end-diastolic volume index (GEDVI) were observed following femoral indicator injection compared to jugular indicator injection (EVLWI: 29.3 ± 10.9 mL/kg vs. 18.3 ± 6.71 mL/kg, p = 0.0003; ITBVI: 2163 ± 631 mL/m2 vs. 806 ± 125 mL/m2, p < 0.0001; GEDVI: 1731 ± 505 mL/m2 vs. 687 ± 141 mL/m2, p < 0.0001). The discrepancy between femoral and jugular measurements exhibited a linear correlation with extracorporeal blood flow (ECBF). Conclusions: In a PiCCO®-derived hemodynamic assessment of patients on vv-ECMO, the femoral indicator injection, as opposed to the jugular injection, resulted in an overestimation of all index parameters. This discrepancy can be attributed to mean transit time (MTt) and downslope time-dependent (DSt) variations in GEDVI and cardiac function index and is correlated with ECBF.
更多
查看译文
关键词
hemodynamic monitoring,extracorporeal membrane oxygenation,transpulmonary thermodilution,PiCCO
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要