JointPPO: Diving Deeper into the Effectiveness of PPO in Multi-Agent Reinforcement Learning

arxiv(2024)

引用 0|浏览11
暂无评分
摘要
While Centralized Training with Decentralized Execution (CTDE) has become the prevailing paradigm in Multi-Agent Reinforcement Learning (MARL), it may not be suitable for scenarios in which agents can fully communicate and share observations with each other. Fully centralized methods, also know as Centralized Training with Centralized Execution (CTCE) methods, can fully utilize observations of all the agents by treating the entire system as a single agent. However, traditional CTCE methods suffer from scalability issues due to the exponential growth of the joint action space. To address these challenges, in this paper we propose JointPPO, a CTCE method that uses Proximal Policy Optimization (PPO) to directly optimize the joint policy of the multi-agent system. JointPPO decomposes the joint policy into conditional probabilities, transforming the decision-making process into a sequence generation task. A Transformer-based joint policy network is constructed, trained with a PPO loss tailored for the joint policy. JointPPO effectively handles a large joint action space and extends PPO to multi-agent setting with theoretical clarity and conciseness. Extensive experiments on the StarCraft Multi-Agent Challenge (SMAC) testbed demonstrate the superiority of JointPPO over the strong baselines. Ablation experiments and analyses are conducted to explores the factors influencing JointPPO's performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要