Gate Voltage- and Bias Voltage-Tunable Staggered-Gap to Broken-Gap Transition Based on WSe2/Ta2NiSe5 Heterostructure for Multimode Optoelectronic Logic Gate.

Tao Zhu, Kai Liu,Yao Zhang, Si Meng, Mengfei He, Yingli Zhang, Minglu Yan, Xiaoxiang Dong,Xiaobo Li,Man Jiang,Hua Xu

ACS nano(2024)

引用 0|浏览1
暂无评分
摘要
Two-dimensional (2D) materials with superior properties exhibit tremendous potential in developing next-generation electronic and optoelectronic devices. Integrating various functions into one device is highly expected as that endows 2D materials great promise for more Moore and more-than-Moore device applications. Here, we construct a WSe2/Ta2NiSe5 heterostructure by stacking the p-type WSe2 and the n-type narrow gap Ta2NiSe5 with the aim to achieve a multifunction optoelectronic device. Owing to the large interface potential barrier, the heterostructure device reveals a prominent diode feature with a large rectify ratio (7.6 × 104) and a low dark current (10-12 A). Especially, gate voltage- and bias voltage-tunable staggered-gap to broken-gap transition is achieved on the heterostructure device, which enables gate voltage-tunable forward and reverse rectifying features. As results, the heterostructure device exhibits superior self-powered photodetection properties, including a high detectivity of 1.08 × 1010 Jones and a fast response time of 91 μs. Additionally, the intrinsic structural anisotropy of Ta2NiSe5 endows the heterostructure device with strong polarization-sensitive photodetection and high-resolution polarization imaging. Based on these characteristics, a multimode optoelectronic logic gate is realized on the heterostructure via synergistically modulating the light on/off, polarization angle, gate voltage, and bias voltage. This work shed light on the future development of constructing high-performance multifunctional optoelectronic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要