Empirical Study of Robust/Developed PID Control for Nonlinear Time-Delayed Dynamical System in Discrete Time Domain

Heliyon(2024)

引用 0|浏览0
暂无评分
摘要
In addition to the high nonlinearity of liquid dynamics inside a tank, a study was conducted to overcome loading/unloading liquid storage tank control problems. In this study, the author developed a nonlinear control system to conquer both nonlinearity and the significant time delay arising from using a pressure-difference-based level sensor. To this end, this study proposes the implementation of nonlinear state dependent (SDP-PID+) control using the SDP transfer function model as a class of nonlinear descriptions of dynamical systems. By incorporating additional robust (plus) compensators alongside the traditional P-, I-, and D-compensators, the robust SDP-PID controller utilizes the complete state feedback to create a time-varying state variable feedback (SDP-SVF) control law. This approach effectively mitigates the effects of the discrete-time SDP-TF. It introduces the pole placement tuning approach, which renders significant performance using the laboratory test rig TPS8.2.2.4, for automatic liquid level control.
更多
查看译文
关键词
PID plus control,discrete-time,nonlinear transfer function system,state dependent (SDP) model,SDP pole
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要