Spin-resolved nonlocal transport in proximitized Rashba nanowires

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Non-equilibrium transport in hybrid semiconductor-superconductor nanowires is crucial for many quantum phenomena such as generating entangled states via cross Andreev reflection (CAR) processes, detecting topological superconductivity, reading out Andreev spin qubits, coupling spin qubits over long distances and so on. Here, we investigate numerically transport properties of a proximitized Rashba nanowire that hosts spin-polarized low-energy quasiparticle states. We show that the spin polarization in such one-dimensional Andreev bands, extended over the entire nanowire length, can be detected in nonlocal transport measurements with tunnel-coupled side leads that are spin polarized. Remarkably, we find an exact correspondence between the sign of the nonlocal conductance and the spin density of the superconducting quasiparticles at the side lead position. We demonstrate that this feature is robust to moderate static disorder. As an example, we show that such a method can be used to detect spin inversion of the bands, accompanying the topological phase transition (TPT) for realistic system parameters. Furthermore, we show that such effects can be used to switch between CAR and elastic cotunneling (ECT) processes by tuning the strength of either the electric or the magnetic field. These findings hold significant practical implications for state-of-the-art transport experiments in such hybrid systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要