Rapid earthquake-tsunami modeling: The multi-event, multi-segment complexity of the 2024 Mw 7.5 Noto Peninsula Earthquake governs tsunami generation

Fabian Kutschera,Zhe Jia,Bar Oryan, Jeremy Wing Ching Wong,Wenyuan Fan,Alice-Agnes Gabriel

crossref(2024)

引用 0|浏览2
暂无评分
摘要
The January 1st, 2024, moment magnitude (Mw) 7.5 Noto Peninsula earthquake ruptured in complex ways, challenging timely analysis of the tsunami generation. We present rapid and accurate tsunami models informed by a 6-subevent centroid moment tensor (CMT) model that we obtain by inverting teleseismic and strong motion data and validation against geodetic observations. We identify two distinct bilateral rupture episodes, including six subevents and a re-nucleation episode at its hypocenter 20 seconds after its initiation, likely aided by fault weakening. We construct a complex uplift model that aligns with known fault system geometries and is critical in modeling the observed tsunami. Our tsunami simulation can explain wave amplitude, timing, and polarity of the leading wave, which are crucial for tsunami early warning. Analyzing a 2000 multi-CMT solution ensemble and comparing to alternative rapid source models, we highlight the importance of incorporating complex source effects for realistic tsunami simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要