MinimumInformation Variability in Linear Langevin Systems via Model Predictive Control

Entropy(2024)

引用 0|浏览0
暂无评分
摘要
Controlling the time evolution of a probability distribution that describes the dynamics of a given complex system is a challenging problem. Achieving success in this endeavour will benefit multiple practical scenarios, e.g., controlling mesoscopic systems. Here, we propose a control approach blending the model predictive control technique with insights from information geometry theory. Focusing on linear Langevin systems, we use model predictive control online optimisation capabilities to determine the system inputs that minimise deviations from the geodesic of the information length over time, ensuring dynamics with minimum “geometric information variability”. We validate our methodology through numerical experimentation on the Ornstein–Uhlenbeck process and Kramers equation, demonstrating its feasibility. Furthermore, in the context of the Ornstein–Uhlenbeck process, we analyse the impact on the entropy production and entropy rate, providing a physical understanding of the effects of minimum information variability control.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要