Artificial Cardiac Conduction System: Simulating Heart Function for Advanced Computational Problem Solving

Rebaz Mohammed Dler Omer, Nawzad K. Al-Salihi, Tarik A. Rashid, Aso M. Aladdin, Mokhtar Mohammadi, Jafar Majidpour

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
This work proposes a novel bio-inspired metaheuristic called Artificial Cardiac Conduction System (ACCS) inspired by the human cardiac conduction system. The ACCS algorithm imitates the functional behaviour of the human heart that generates and sends signals to the heart muscle, initiating it to contract. Four nodes in the myocardium layer participate in generating and controlling heart rate, such as the sinoatrial, atrioventricular, bundle of His, and Purkinje fibres. The mechanism of controlling the heart rate through these four nodes is implemented. The algorithm is then benchmarked on 19 well-known mathematical test functions as it can determine the exploitation and exploration capability of the algorithm. The results are verified by a comparative study with Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Differential Evolution (DE), and Fast Evolutionary Programming (FEP). The algorithm undergoes a rigorous evaluation using the CEC-C06 2019 Benchmark Test Functions, illuminating its adeptness in both exploitation and exploration. Validation ensues through a meticulous comparative analysis involving the Dragonfly Algorithm (DA), WOA, PSO, Lagrange Elementary Optimization (Leo), and the Ant Nesting Algorithm (ANA). The results show that the ACCS algorithm can provide very competitive results compared to these well-known metaheuristics and other conventional methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要