Proteomic insight into arabinogalactan utilization by particle-associated Maribacter sp. MAR_2009_72

FEMS MICROBIOLOGY ECOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
Arabinose and galactose are major, rapidly metabolized components of marine particulate and dissolved organic matter. In this study, we observed for the first time large microbiomes for the degradation of arabinogalactan and report a detailed investigation of arabinogalactan utilization by the flavobacterium Maribacter sp. MAR_2009_72. Cellular extracts hydrolysed arabinogalactan in vitro. Comparative proteomic analyses of cells grown on arabinogalactan, arabinose, galactose, and glucose revealed the expression of specific proteins in the presence of arabinogalactan, mainly glycoside hydrolases (GH). Extracellular glycan hydrolysis involved five alpha-l-arabinofuranosidases affiliating with glycoside hydrolase families 43 and 51, four unsaturated rhamnogalacturonylhydrolases (GH105) and a protein with a glycoside hydrolase family-like domain. We detected expression of three induced TonB-dependent SusC/D transporter systems, one SusC, and nine glycoside hydrolases with a predicted periplasmatic location. These are affiliated with the families GH3, GH10, GH29, GH31, GH67, GH78, and GH115. The genes are located outside of and within canonical polysaccharide utilization loci classified as specific for arabinogalactan, for galactose-containing glycans, and for arabinose-containing glycans. The breadth of enzymatic functions expressed in Maribacter sp. MAR_2009_72 as response to arabinogalactan from the terrestrial plant larch suggests that Flavobacteriia are main catalysts of the rapid turnover of arabinogalactans in the marine environment.
更多
查看译文
关键词
alpha-l-arabinofuranosidase,Flavobacteriia,GH43,marine bacteria,proteomics,unsaturated rhamnogalacturonylhydrolase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要