TSG-6 mediated extracellular matrix modifications regulate hypoxic-ischemic brain injury.

Taasin Srivastava,Hung Nguyen, Gage Haden,Parham Diba, Steven Sowa, Norah LaNguyen, William Reed-Dustin, Wenbin Zhu,Xi Gong, Edward N Harris,Selva Baltan, Stephen A Back

The Journal of neuroscience : the official journal of the Society for Neuroscience(2024)

引用 0|浏览1
暂无评分
摘要
Proteoglycans containing link-domains modify the extracellular matrix (ECM) to regulate cellular homeostasis and can also sensitize tissues/organs to injury and stress. Hypoxic-Ischemic (H-I) injury disrupts cellular homeostasis by activating inflammation and attenuating regeneration and repair pathways. In the brain, the main component of the ECM is the glycosaminoglycan (GAG), Hyaluronic Acid (HA), but whether HA modifications of the ECM regulate cellular homeostasis and response to H-I injury is not known. In this report, employing both male and female mice, we demonstrate that link-domain containing proteoglycan, TNFα-stimulated gene-6 (TSG-6), is active in the brain from birth onwards and differentially modifies ECM HA during discrete neurodevelopmental windows. ECM HA modification by TSG-6 enables it to serve as a developmental switch to regulate activity of the Hippo pathway effector protein, Yes Associated Protein 1 (YAP1) in the maturing brain and in response to H-I injury. Mice that lack TSG-6 expression display dysregulated expression of YAP1 targets, excitatory amino acid transporter 1 (EAAT1; GLAST) and 2 (EAAT2; GLT-1). Dysregulation of YAP1 activation in TSG-6-/- mice coincides with age- and sex-dependent sensitization of the brain to H-I injury such that 1-week-old neonates display an anti-inflammatory response in contrast to an enhanced pro-inflammatory injury reaction in 3-month-old adult males but not females. Our findings thus support that a key regulator of age- and sex-dependent H-I injury response in the mouse brain is modulation of the Hippo-YAP1 pathway by TSG-6 dependent ECM modifications.Significance Statement Hypoxic-Ischemic (H-I) injury is a common cause of morbidity and mortality worldwide. Numerous genomic and proteomic screens have identified changes in extracellular matrix (ECM) as the most common finding, yet the downstream mechanistic insights remain obscure. We found that proteoglycan, TNF stimulated gene-6 (TSG-6) dependent ECM modifications regulate the activity of the Hippo pathway effector, the RNA transcription co-activator, Yes Associated Protein 1 (YAP1). Dysregulation of YAP1 activation in TSG-6-/- mice coincided with age- and sex-dependent sensitization of the brain to H-I injury such that neonates displayed an anti-inflammatory response in contrast to an enhanced pro-inflammatory injury reaction in adults. Thus, our findings establish TSG-6-dependent ECM modifications as a key regulator of age- and sex-dependent H-I injury responses.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要