Harnessing the power of tidal flat diatoms to combat climate change

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY(2024)

引用 0|浏览2
暂无评分
摘要
In approximately one decade, global temperatures will likely exceed a warming level that a United Nations Intergovernmental Panel on Climate Change report considers a "red alert for humanity". We propose exploring tidal flat diatoms to address climate change challenges. Tidal flats are extensive coastal ecosystems crucial to the provisioning and regulation of aquatic environments. Diatoms contribute to tidal flat biomass production and account for 20% of global primary productivity and 40% of annual marine biomass production, making them crucial for nutrient cycling and sediment stabilization. Potential CO2 removal from Korean tidal flats by diatoms is estimated to be 598,457-683,171 t CO2 equivalents (CO(2)e) annually, with the economic value of blue carbon (BC) resulting from diatom activity being approximately US$ 17.95-20.50 million. Dissemination of this potential could incentivize coastal wetland protection and climate change mitigation measures. The global estimated CO(2)e removal potential of tidal flat diatoms is 40,957,346-46,754,961 t CO(2)e, representing 0.11-0.13% of the annual global greenhouse gas emissions, even though tidal flats cover 0.0025% of the Earth's surface and diatoms represent less than 0.5% (by weight) of all photosynthetic plants. Researchers should combine ecology and economics to develop standardized approaches for carbon input monitoring and quantification. Further, spatiotemporal analyses of environmental threats to tidal flat diatoms are necessary for conserving their biodiversity and function as a critical BC source. Land-based cultivation for large-scale biomass production and biorefinery processes can contribute to a greener, more prosperous future for humanity and the marine ecosystems upon which we rely.
更多
查看译文
关键词
Blue carbon,carbon capture,climate change,conservation,diatoms,tidal flats,Hongbo Li and Scott Bradford
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要