Measuring residual stresses in individual on-chip interconnects using synchrotron nanodiffraction

APPLIED PHYSICS LETTERS(2024)

引用 0|浏览0
暂无评分
摘要
As the dimensions of interconnects in integrated circuits continue to shrink, an urgent need arises to understand the physical mechanism associated with electromigration. Using x-ray nanodiffraction, we analyzed the stresses in Blech-structured pure Cu lines subjected to different electromigration conditions. The results suggest that the measured residual stresses in the early stages of electromigration are related to relaxation of stresses caused by thermal expansion mismatch, while a developing current-induced stress leads to reductions in the residual stress after longer test times. These findings not only validate the feasibility of measuring stress in copper lines using nanodiffraction but also highlight the need for a further understanding, particularly through in situ electromigration experiments with x-ray nanodiffraction analysis. (c) 2024 Author(s).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要