nanoRAPIDS as an analytical pipeline for the discovery of novel bioactive metabolites in complex culture extracts at the nanoscale

Isabel Nunez Santiago, Nataliia V. Machushynets, Marija Mladic, Doris A. van Bergeijk,Somayah S. Elsayed,Thomas Hankemeier,Gilles P. van Wezel

COMMUNICATIONS CHEMISTRY(2024)

引用 0|浏览4
暂无评分
摘要
Microbial natural products form the basis of most of the antibiotics used in the clinic. The vast majority has not yet been discovered, among others because the hidden chemical space is obscured by previously identified (and typically abundant) antibiotics in culture extracts. Efficient dereplication is therefore key to the discovery of our future medicines. Here we present an analytical platform for the efficient identification and prioritization of low abundance bioactive compounds at nanoliter scale, called nanoRAPIDS. NanoRAPIDS encompasses analytical scale separation and nanofractionation of natural extracts, followed by the bioassay of interest, automated mass spectrometry identification, and Global Natural Products Social molecular networking (GNPS) for dereplication. As little as 10 mu L crude extract is fractionated into 384 fractions. First, bioactive congeners of iturins and surfactins were identified in Bacillus, based on their bioactivity. Subsequently, bioactive molecules were identified in an extensive network of angucyclines elicited by catechol in cultures of Streptomyces sp. This allowed the discovery of a highly unusual N-acetylcysteine conjugate of saquayamycin, despite low production levels in an otherwise abundant molecular family. These data underline the utility and broad application of the technology for the prioritization of minor bioactive compounds in complex extracts. Microbial natural products are an important source for antibiotic discovery, however, their efficient dereplication remains challenging. Here, the authors develop an analytical pipeline, nanoRAPIDS, to prioritize low abundance bioactive compounds at nanoscale, by integrating the bioassay of interest, automated mass spectrometry identification and GNPS-based dereplication, resulting in the discovery of saquayamycin N from Streptomyces sp. MBT84.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要