Optimizing Attribute Reduction in Multi-Granularity Data through a Hybrid Supervised–Unsupervised Model

Zeyuan Fan,Jianjun Chen, Hongyang Cui, Jingjing Song,Taihua Xu

Mathematics(2024)

引用 0|浏览0
暂无评分
摘要
Attribute reduction is a core technique in the rough set domain and an important step in data preprocessing. Researchers have proposed numerous innovative methods to enhance the capability of attribute reduction, such as the emergence of multi-granularity rough set models, which can effectively process distributed and multi-granularity data. However, these innovative methods still have numerous shortcomings, such as addressing complex constraints and conducting multi-angle effectiveness evaluations. Based on the multi-granularity model, this study proposes a new method of attribute reduction, namely using multi-granularity neighborhood information gain ratio as the measurement criterion. This method combines both supervised and unsupervised perspectives, and by integrating multi-granularity technology with neighborhood rough set theory, constructs a model that can adapt to multi-level data features. This novel method stands out by addressing complex constraints and facilitating multi-perspective effectiveness evaluations. It has several advantages: (1) it combines supervised and unsupervised learning methods, allowing for nuanced data interpretation and enhanced attribute selection; (2) by incorporating multi-granularity structures, the algorithm can analyze data at various levels of granularity. This allows for a more detailed understanding of data characteristics at each level, which can be crucial for complex datasets; and (3) by using neighborhood relations instead of indiscernibility relations, the method effectively handles uncertain and fuzzy data, making it suitable for real-world datasets that often contain imprecise or incomplete information. It not only selects the optimal granularity level or attribute set based on specific requirements, but also demonstrates its versatility and robustness through extensive experiments on 15 UCI datasets. Comparative analyses against six established attribute reduction algorithms confirms the superior reliability and consistency of our proposed method. This research not only enhances the understanding of attribute reduction mechanisms, but also sets a new benchmark for future explorations in the field.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要