Interpretable cancer cell detection with phonon microscopy using multi-task conditional neural networks for inter-batch calibration

CoRR(2024)

引用 0|浏览1
暂无评分
摘要
Advances in artificial intelligence (AI) show great potential in revealing underlying information from phonon microscopy (high-frequency ultrasound) data to identify cancerous cells. However, this technology suffers from the 'batch effect' that comes from unavoidable technical variations between each experiment, creating confounding variables that the AI model may inadvertently learn. We therefore present a multi-task conditional neural network framework to simultaneously achieve inter-batch calibration, by removing confounding variables, and accurate cell classification of time-resolved phonon-derived signals. We validate our approach by training and validating on different experimental batches, achieving a balanced precision of 89.22 cross-validated precision of 89.07 cancerous regions. Classification can be performed in 0.5 seconds with only simple prior batch information required for multiple batch corrections. Further, we extend our model to reconstruct denoised signals, enabling physical interpretation of salient features indicating disease state including sound velocity, sound attenuation and cell-adhesion to substrate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要