Ring-opening polymerisation of alkyl-substituted -caprolactones: kinetic effects of substitution position

POLYMER CHEMISTRY(2024)

引用 0|浏览0
暂无评分
摘要
Ring-opening polymerisation (ROP) of lactones has been proven as a powerful technique to generate polyesters with high levels of control over molar mass and polymer dispersity. However, the introduction of functional groups on the monomer ring structure can dramatically influence the ability of a monomer to undergo ROP. Therefore, understanding the structure-reactivity relationship of functional monomers is essential to gain access to materials with chemical functionality via direct polymerisation. Herein, we report how structural modifications of alkyl-substituted epsilon-caprolactones affected their reactivity towards the ring-opening of the functional monomer. We observed that the reactivity was strongly influenced by the substituent position, wherein the delta-substituted monomer exhibited the fastest polymerisation kinetics. In contrast, a substituent placement in the epsilon-position significantly reduced polymerisation time compared to other substituent positions. Moreover, the thermal properties of the resultant functional epsilon-polycaprolactones were investigated and showed no significant change in the thermal transitions. This demonstrates that functional caprolactone monomers with sterically demanding functional groups can still undergo direct ring-opening polymerisation and that careful positioning of these functional groups enables control of the rate of polymerisation, a crucial parameter to be considered for the design of new prospective functional monomers and their industrial applications. Alkyl-functional polycaprolactones were prepared via direct and well-controlled ring-opening polymerisation and the relationship between the substituent position and polymerisation rate was investigated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要