1.3 μm InAs/GaAs quantum-dot lasers grown on planar on-axis Si (001) substrates with high slope-efficiency and low differential resistance

Laser Physics Letters(2024)

引用 0|浏览3
暂无评分
摘要
Abstract We report electrically pumped continuous-wave (CW) InAs/GaAs quantum dot lasers monolithically grown on planar on-axis Si (001) substrates. Combining an asymmetric waveguide epitaxy structure with aluminium-free upper cladding layers and a symmetrical cathode chip structure, 1.3 μm band lasers with low differential resistance and high slope-efficiency have been achieved. Moreover, the optimized symmetrical cathode structure of the laser chips is used to improve the slope-efficiency by reducing the differential resistance and waste heat. The Fabry–Perot broad-stripe edge-emitting lasers with 2000 μm cavity length and 15 μm stripe width achieve a single-facet output power of 73 mW, a single-facet slope efficiency of 0.165 W A−1, and a differential resistance of 1.31 Ω at ∼1.31 μm wavelength under CW conditions at room temperature (25 °C). Importantly, these results provide an effective strategy to achieve 1.3 μm wavelength band single-mode distributed feedback lasers directly on planar on-axis Si (001) substrates with high efficiency.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要