Mechanical and thermal properties of in situ AlN/Al-12Si composite fabricated by laser powder bed fusion

Xinxing Xiong, Zixi Liang,Pei Wang,Yang Qi,Zhangwei Chen,Zhiyuan Liu,Xulei Wang, Qingliang Shen,Nan Kang,Laichang Zhang

Materials Characterization(2024)

引用 0|浏览4
暂无评分
摘要
This work reports on the synthesis, mechanical, and thermal properties of in situ AlN/Al-12Si composite through laser powder bed fusion (LPBF) by blending Al-12Si powder with 5 vol% nano-sized BN particles. Incorporating nano-BN particles results in (i) formation of thermally stable AlN phase, preventing Si diffusion and breakdown of cellular structure, (ii) improvement of compressive yield strength (CYS), and (iii) reduction in coefficients of thermal expansion (CTE) and thermal conductivity. In addition, compared to Al-12Si alloy, the composite exhibits grain refinement from 38.8 to 1.2 μm in size, and the alteration of columnar grains (Al-12Si) to equiaxed grains (AlN/Al-12Si). At annealing temperatures above 573 K, the CYS of the unadulterated Al-12Si alloy had a ~ 2.1 times greater reduction (from 285 to 200 MPa) compared to that of the composites (from 301 to 260 MPa). The formation of the AlN phase mitigates the significant reduction in CYS. The CTE of Al-12Si and AlN/Al-12Si are 27.3 × 10−6 K−1 and 24.3 × 10−6 K−1 respectively. There is good agreement between the measured CYS results and the calculated strengthening mechanisms. This work offers both theoretical insights and experimental data to support the use of LPBF AlN/Al-12Si composite in low- and moderate-temperature applications.
更多
查看译文
关键词
Laser powder bed fusion,AlN/Al-12Si composite,Mechanical properties,Thermal behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要