Artificial intelligence-guided detection of under-recognized cardiomyopathies on point-of-care cardiac ultrasound.

medRxiv : the preprint server for health sciences(2024)

引用 0|浏览4
暂无评分
摘要
Background:Point-of-care ultrasonography (POCUS) enables access to cardiac imaging directly at the bedside but is limited by brief acquisition, variation in acquisition quality, and lack of advanced protocols. Objective:To develop and validate deep learning models for detecting underdiagnosed cardiomyopathies on cardiac POCUS, leveraging a novel acquisition quality-adapted modeling strategy. Methods:To develop the models, we identified transthoracic echocardiograms (TTEs) of patients across five hospitals in a large U.S. health system with transthyretin amyloid cardiomyopathy (ATTR-CM, confirmed by Tc 99m -pyrophosphate imaging), hypertrophic cardiomyopathy (HCM, confirmed by cardiac magnetic resonance), and controls enriched for the presence of severe AS. In a sample of 290,245 TTE videos, we used novel augmentation approaches and a customized loss function to weigh image and view quality to train a multi-label, view agnostic video-based convolutional neural network (CNN) to discriminate the presence of ATTR-CM, HCM, and/or AS. Models were tested across 3,758 real-world POCUS videos from 1,879 studies in 1,330 independent emergency department (ED) patients from 2011 through 2023. Results:Our multi-label, view-agnostic classifier demonstrated state-of-the-art performance in discriminating ATTR-CM (AUROC 0.98 [95%CI: 0.96-0.99]) and HCM (AUROC 0.95 [95% CI: 0.94-0.96]) on standard TTE studies. Automated metrics of anatomical view correctness confirmed significantly lower quality in POCUS vs TTE videos (median view classifier confidence of 0.63 [IQR: 0.44-0.88] vs 0.93 [IQR: 0.69-1.00], p <0.001). When deployed to POCUS videos, our algorithm effectively discriminated ATTR-CM and HCM with AUROC of up to 0.94 (parasternal long-axis (PLAX)), and 0.85 (apical 4 chamber), corresponding to positive diagnostic odds ratios of 46.7 and 25.5, respectively. In total, 18/35 (51.4%) of ATTR-CM and 32/57 (41.1%) of HCM patients in the POCUS cohort had an AI-positive screen in the year before their eventual confirmatory imaging. Conclusions:We define and validate an AI framework that enables scalable, opportunistic screening of under-diagnosed cardiomyopathies using POCUS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要