Efficient Transferability Assessment for Selection of Pre-trained Detectors

2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)(2024)

引用 0|浏览5
暂无评分
摘要
Large-scale pre-training followed by downstream fine-tuning is an effective solution for transferring deep-learning-based models. Since finetuning all possible pre-trained models is computational costly, we aim to predict the transferability performance of these pre-trained models in a computational efficient manner. Different from previous work that seek out suitable models for downstream classification and segmentation tasks, this paper studies the efficient transferability assessment of pre-trained object detectors. To this end, we build up a detector transferability benchmark which contains a large and diverse zoo of pre-trained detectors with various architectures, source datasets and training schemes. Given this zoo, we adopt 7 target datasets from 5 diverse domains as the downstream target tasks for evaluation. Further, we propose to assess classification and regression sub-tasks simultaneously in a unified framework. Additionally, we design a complementary metric for evaluating tasks with varying objects. Experimental results demonstrate that our method outperforms other state-of-the-art approaches in assessing transferability under different target domains while efficiently reducing wall-clock time 32× and requires a mere 5.2% memory footprint compared to brute-force fine-tuning of all pre-trained detectors.
更多
查看译文
关键词
Algorithms,Machine learning architectures,formulations,and algorithms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要