Crystallization induced segregated structure for outstanding conductive property with low percolation threshold

Beixue Yang,Zhangbin Yang,Zichen Zhou,Jun Zhang, Jianning Bao

PLASTICS RUBBER AND COMPOSITES(2024)

引用 0|浏览2
暂无评分
摘要
Conductive polymer composites (CPCs) are promising alternatives to metal conductive materials due to their light-weight and low-cost. This work investigates the effect of the crystallization behavior of the matrix on the electrical property of CPCs, where semi-crystalline polypropylene (PP) and amorphous styrene-butadiene-styrene tri-block copolymer (SBS) are selected as a matrix, respectively, and conductive carbon black (CB) particles are introduced into matrixes by melting blending. Based on the electrical properties of CPCs with various CB contents and percolation theory, the percolation threshold of 1.8 vol% in PP matrix composites is obtained, much lower than that of SBS matrix composites (5.4 vol%). The analysis with a polarizing microscope and differential scanning calorimeter confirms that such a significant difference in percolation threshold between two composites is due to the crystallization behavior while the crystallization induced segregated structure is proposed. Finally, the rheology behaviors and mechanical properties are characterized for microstructures and applications, respectively.
更多
查看译文
关键词
polypropylene,conductive polymer composites,crystallization,percolation threshold,conductive network,percolation theory,resistivity,carbon black
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要