Snow thermal conductivity and conductive flux in the Central Arctic: Estimates from observations and implications for models

Elem Sci Anth(2024)

引用 0|浏览7
暂无评分
摘要
During the Arctic winter, the conductive heat flux through the sea ice and snow balances the radiative and turbulent heat fluxes at the surface. Snow on sea ice is a thermal insulator that reduces the magnitude of the conductive flux. The thermal conductivity of snow, that is, how readily energy is conducted, is known to vary significantly in time and space from observations, but most forecast and climate models use a constant value. This work begins with a demonstration of the importance of snow thermal conductivity in a regional coupled forecast model. Varying snow thermal conductivity impacts the magnitudes of all surface fluxes, not just conduction, and their responses to atmospheric forcing. Given the importance of snow thermal conductivity in models, we use observations from sea ice mass balance buoys installed during the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition to derive the profiles of thermal conductivity, density, and conductive flux. From 13 sites, median snow thermal conductivity ranges from 0.33 W m−1 K−1 to 0.47 W m−1 K−1 with a median from all data of 0.39 W m−1 K−1 from October to February. In terms of surface energy budget closure, estimated conductive fluxes are generally smaller than the net atmospheric flux by as much as 20 W m−2, but the average residual during winter is −6 W m−2, which is within the uncertainties. The spatial variability of conductive heat flux is highest during clear and cold time periods. Higher surface temperature, which often occurs during cloudy conditions, and thicker snowpacks reduce temporal and spatial variability. These relationships are compared between observations and the coupled forecast model, emphasizing both the importance and challenge of describing thermodynamic parameters of snow cover for modeling the Arctic as a coupled system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要