Pancreatic Cancer Treatment Targeting the HGF/c-MET Pathway: The MEK Inhibitor Trametinib.

Cancers(2024)

引用 0|浏览0
暂无评分
摘要
Pancreatic cancer is characterized by fibrosis/desmoplasia in the tumor microenvironment, which is primarily mediated by pancreatic stellate cells and cancer-associated fibroblasts. HGF/c-MET signaling, which is instrumental in embryonic development and wound healing, is also implicated for its mitogenic and motogenic properties. In pancreatic cancer, this pathway, along with its downstream signaling pathways, is associated with disease progression, prognosis, metastasis, chemoresistance, and other tumor-related factors. Other features of the microenvironment in pancreatic cancer with the HGF/c-MET pathway include hypoxia, angiogenesis, metastasis, and the urokinase plasminogen activator positive feed-forward loop. All these attributes critically influence the initiation, progression, and metastasis of pancreatic cancer. Therefore, targeting the HGF/c-MET signaling pathway appears promising for the development of innovative drugs for pancreatic cancer treatment. One of the primary downstream effects of c-MET activation is the MAPK/ERK (Ras, Ras/Raf/MEK/ERK) signaling cascade, and MEK (Mitogen-activated protein kinase kinase) inhibitors have demonstrated therapeutic value in RAS-mutant melanoma and lung cancer. Trametinib is a selective MEK1 and MEK2 inhibitor, and it has evolved as a pivotal therapeutic agent targeting the MAPK/ERK pathway in various malignancies, including BRAF-mutated melanoma, non-small cell lung cancer and thyroid cancer. The drug's effectiveness increases when combined with agents like BRAF inhibitors. However, resistance remains a challenge, necessitating ongoing research to counteract the resistance mechanisms. This review offers an in-depth exploration of the HGF/c-MET signaling pathway, trametinib's mechanism, clinical applications, combination strategies, and future directions in the context of pancreatic cancer.
更多
查看译文
关键词
pancreatic cancer,trametinib,tumor microenvironment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要