Resilient Data Harvesting: A Low-Cost IoT Paradigm for Robust Measurement Collection in Challenging Environments

crossref(2024)

引用 0|浏览3
暂无评分
摘要
Desert ecosystems are particularly vulnerable to global climate change, characterized by increased temperatures, variable intensity and frequency in precipitation and increased atmospheric CO2 levels. Under such conditions, substantial alterations in their structure and functioning of desert ecosystems is expected. This climate shift poses a serious threat to species adapted to deserts, especially endemic plants, which are susceptible to the potential loss of suitable habitats. Further to that, neighboring populated areas are also exposed to adverse conditions characterized by poor air quality, with direct impacts on human health, the economy and the environment overall. To address these challenges, the CiROCCO Project aims to implement a robust yet cost-effective Internet of Things (IoT) system for environmental measurements in harsh desert environments. Such a system not only enhances data accuracy but also enables continuous monitoring, reduces costs, and supports critical research and conservation efforts considering climate change and ecosystem challenges. The proposed IoT system primarily relies on a network of distributed low-cost Wireless Sensor Nodes (WSNs) that have the capability to monitor the surrounding environment and measure various crucial meteorological and air quality parameters, including inter alia air and sand/soil temperature, solar radiation, Ozone, PM2.5, PM10, with accuracy comparable to commercial high-end nodes offering similar measurements. Additionally, communication gateways are employed to collect measurements from the distributed WSNs using low-power consumption protocols such as Bluetooth Low Energy (BLE) and LoRaWAN. The collected measurements are then standardized into JSON messages, including the unique identifier of the device, timestamp, and parameter values. Subsequently, the data are transmitted wirelessly to the cloud using the most suitable method based on network connectivity. If there is an available Wi-Fi network in the field, the data is prioritized for transmission through this network. Alternatively, the system utilizes the 4G or 5G network in the area. In cases where none of these networks is accessible, the data is transmitted to the cloud through satellite communications. This method involves an additional satellite device connected to the gateway, where the formatted messages are loaded through serial communications. The satellite device awaits the next pass of the nanosatellite, for uploading the measurements. The nanosatellite continues its journey until it passes by a base station, at which point the data are downloaded, stored in the base station portal, and made available to third-party applications through the portal API. In conclusion, the scientific approach outlined in this work addresses the imposing challenges of collecting valuable in-situ data for monitoring climatic conditions in hard-to-reach under-sampled environments. The development of low-cost devices, including WSNs and gateways with IoT capabilities, is crucial for advancing research and conservation efforts in the context of climate change and considering the unique challenges posed on desert ecosystems. AKNOWLEDGMENTS This research work is part of the CiROCCO Project. CiROCCO Project is funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or REA. Neither the European Union nor the granting authority can be held responsible for them.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要