The Ouroboros of Memristors: Neural Networks Facilitating Memristor Programming

Zhenming Yu, Ming-Jay Yang, Jan Finkbeiner,Sebastian Siegel,John Paul Strachan,Emre Neftci

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
Memristive devices hold promise to improve the scale and efficiency of machine learning and neuromorphic hardware, thanks to their compact size, low power consumption, and the ability to perform matrix multiplications in constant time. However, on-chip training with memristor arrays still faces challenges, including device-to-device and cycle-to-cycle variations, switching non-linearity, and especially SET and RESET asymmetry. To combat device non-linearity and asymmetry, we propose to program memristors by harnessing neural networks that map desired conductance updates to the required pulse times. With our method, approximately 95 relative percentage difference of +-50 one attempt. Our approach substantially reduces memristor programming delays compared to traditional write-and-verify methods, presenting an advantageous solution for on-chip training scenarios. Furthermore, our proposed neural network can be accelerated by memristor arrays upon deployment, providing assistance while reducing hardware overhead compared with previous works. This work contributes significantly to the practical application of memristors, particularly in reducing delays in memristor programming. It also envisions the future development of memristor-based machine learning accelerators.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要