Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications

OPTO-ELECTRONIC ADVANCES(2024)

引用 0|浏览2
暂无评分
摘要
In backlighting systems for liquid crystal displays, conventional red, green, and blue (RGB) light sources that lack polarization properties can result in a significant optical loss of up to 50% when passing through a polarizer. To address this inefficiency and optimize energy utilization, this study presents a high-performance device designed for RGB polarized emissions. The device employs an array of semipolar blue mu LEDs with inherent polarization capabilities, coupled with mechanically stretched films of green -emitting CsPbBr3 nanorods and red -emitting CsPbI3-Cs4PbI6 hybrid nanocrystals. The CsPbBr3 nanorods in the polymer film offer intrinsic polarization emission, while the aligned -wire structures formed by the stable CsPbI3-Cs4PbI6 hybrid nanocrystals contribute to substantial anisotropic emissions, due to their high dielectric constant. The resulting device achieved RGB polarization degrees of 0.26, 0.48, and 0.38, respectively, and exhibited a broad color gamut, reaching 137.2% of the NTSC standard and 102.5% of the Rec. 2020 standard. When compared to a device utilizing c -plane LEDs for excitation, the current approach increased the intensity of light transmitted through the polarizer by 73.6%. This novel fabrication approach for polarized devices containing RGB components holds considerable promise for advancing next -generation display technologies.
更多
查看译文
关键词
halide perovskite,light-emitting-diodes,polarized emission,nanocrystals,stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要