New insight into the surface composition of Zhurong landing area

crossref(2024)

引用 0|浏览1
暂无评分
摘要
The Zhurong rover conducted in-situ spectral investigations of southern Utopia Planitia, where orbital observations revealed the presence of spectrally featureless dust. However, in-situ reflectance spectra collected by the Short Wave Infrared (SWIR) spectrometer exhibit hydrated features for all observations along the traverse. These features have been interpreted as being associated with groundwater (Liu Y. et al., 2022) or ocean (Liu C. et al., 2022; Xiao et al., 2023) or atmospheric water (Zhao et al., 2023). Here, we combine the Multispectral Camera (MSCam) and SWIR data to characterize the spectra of landing site and provide some new insights into the surface composition diversity. Multispectral images suggest that most of surfaces are consistent with the presence of dust whereas a few of rock surfaces exhibiting dark tones are compositionally distinct. The co-observational SWIR data can be used to further constrain the surface compositions. With Principal Component Analysis (PCA) and unmixing analysis of the SWIR data, we found that these dusty surfaces are ubiquitously characterized with faint 1900 and 2200 nm absorptions and the dark rock surfaces exhibit strong blue slopes in the NIR. The hydrated dust features seem to contrast with previous knowledge, that the dust does not exhibit obvious NIR hydration features from orbital observations. Such discrepancies were also observed at Jezero crater, where the fine soils or dusty rocks exhibit a 1900 nm H2O absorption but without 2200 nm band (Mandon et al., 2023). Spectral variation may reflect distinct surface dust compositions between the Perseverance and Zhurong landing site, indicating different dust reservoirs or dust alteration processes. The surface dust of different sites may be mixtures of globally well-mixed fine materials and local/regional distinct hydrated phases. Another possibilities is that the dust underwent different post-deposition aqueous alteration. The dark rock surfaces may represent less dust-coated surfaces. The strong blue slope features have been previously attributed to coatings on a dark substrate. Furthermore, the morphological properties show that these surfaces exhibit relatively fragile surface context, consistent with surface coatings or rinds.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要