Lack of TGFβ signaling competency predicts conversion of immune poor cancer to immune rich and response to checkpoint blockade.

bioRxiv : the preprint server for biology(2024)

引用 0|浏览2
暂无评分
摘要
Background:Transforming growth factor beta (TGFβ) is well-recognized as an immunosuppressive player in the tumor microenvironment but also has a significant impact on cancer cell phenotypes. Loss of TGFβ signaling impairs DNA repair competency, which is described by a transcriptomic score, βAlt. Cancers with high βAlt have more genomic damage and are more responsive to genotoxic therapy. The growing appreciation that cancer DNA repair deficits are important determinants of immune response prompted us to investigate βAlt's association with response to immune checkpoint blockade (ICB). We predicted that high βAlt tumors would be infiltrated with lymphocytes because of DNA damage burden and hence responsive to ICB. Methods:We analyzed public transcriptomic data from clinical trials and preclinical models using transcriptomic signatures of TGFβ targets, DNA repair genes, tumor educated immune cells and interferon. A high βAlt, immune poor mammary tumor derived transplant model resistant to programmed death ligand 1 (PD-L1) antibodies was studied using multispectral flow cytometry to interrogate the immune system. Results:Metastatic bladder patients in IMvigor 210 who responded to ICB had significantly increased βAlt scores and experienced significantly longer overall survival compared to those with low βAlt scores (hazard ratio 0.62, P=0.011). Unexpectedly, 75% of high βAlt cancers were immune poor as defined by low expression of tumor educated immune cell and interferon signatures. The association of high βAlt with immune poor cancer was also evident in TCGA and preclinical cancer models. We used a high βAlt, immune poor cancer to test therapeutic strategies to overcome its inherent anti-PD-L1 resistance. Combination treatment with radiation and TGFβ inhibition were necessary for lymphocytic infiltration and activated NK cells were required for ICB response. Bioinformatic analysis identified high βAlt, immune poor B16 and CT26 preclinical models and paired biopsies of cancer patients that also demonstrated NK cell activation upon response to ICB. Conclusions:Our studies confirm βAlt as a biomarker that predicts response to ICB in immune poor cancers., which has implications for the development of therapeutic strategies to increase the number of cancer patients who will benefit from immunotherapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要