Improving and Assessing Organized Convection Parameterization in the Unified Model

Zhixiao Zhang,Hannah Christensen, Mark Muetzelfeldt,Tim Woollings, Bob Plant, Alison Stirling, Michael Whitall,Mitchell Moncrieff,Chih-Chieh Chen

crossref(2024)

引用 0|浏览2
暂无评分
摘要
Improving weather and climate prediction cannot avoid accurately representing organized convection, as its convective and stratiform components distinctly reshape large-scale circulations via redistributing momentum and heat. For latent heating, the stratiform heating in organized convection shifts to higher altitudes compared to convective regions, presenting a significant challenge for representation in models across scales. The Multiscale Coherent Structural Parameterization (MCSP), introduced by Moncrieff et al. (2017), offers a promising solution by generating the top-heavy profile from convective heating in slantwise layer overturning scenarios. As part of the MCS: PRIME project, the PRIME-MCSP implementation by Zhang et al. (submitted, 2024) couples MCSP with the CoMorph-A convection scheme in the UK Met Office Unified Model with the following improvements: 1) CoMorph permits unstable air to rise from any height, diverging from the conventional CAPE trigger for deep convection, thereby enhancing continuity and facilitating storm tracking. 2) We activate MCSP selectively for deep mixed-phase clouds, recognizing the limited ability of shallow clouds to produce a stratiform component. 3) We configure the global model runs to include both a fixed convective-stratiform heating fraction and a fraction proportional to cloud top temperature. MCS tracks in ensembles of weather runs show that PRIME-MCSP suppresses cloud deepening and reduces precipitation areas by dampening low-level updrafts. 20-year climate simulations show that PRIME-MCSP improves the precipitation seasonal cycle over the Indian Ocean, while increasing the warm-season wet bias over the Western Pacific. Additionally, PRIME-MCSP intensifies the Madden Julian Oscillation (MJO). The model run using a variable convective-stratiform fraction more accurately represents the MJO frequency and aligns better with reanalysis. Future plans focus on the stochastic representation of stratiform effects, steered by insights from data assimilation increments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要