Density-driven flow propagating over a bottom large-scale roughness

Claudia Adduce,Maria Rita Maggi, Giovanni Di Lollo

crossref(2024)

引用 0|浏览0
暂无评分
摘要
The hydrostatic imbalance between two adjacent fluids, driven by density variations associated with temperature, salinity, or sediment concentration gradients, often initiates the formation of gravity currents. These phenomena play a crucial role in various geophysical and engineering applications, influencing atmospheric, terrestrial, and subaqueous environments. In recent years, there has been growing research interest in understanding the interaction of gravity currents with obstacles on the seafloor. These obstacles can be artificial structures like pipelines and gas pipelines situated in the oceanic environment. Therefore, it is essential to investigate the dynamics of gravity currents over complex topography and analyze their characteristics and behavior as the initial conditions vary. This study experimentally examines the evolution of bottom-propagating gravity currents in the presence of an array of submerged cylindrical obstacles. The laboratory experiments were conducted within a Perspex tank with dimensions of 3 m in length, 0.3 m in height, and 0.2 m in width, using the lock-release technique by filling the left and right volumes of the tank to the same water depth. The density difference was reproduced through a salinity gradient. Submerged roughness was introduced by arranging a series of rigid plastic cylinders at a specified location, covering the entire width of the channel. Two different diameters, 2 cm and 2.5 cm, were analyzed, and the initial current depths were varied. A total of 24 full-depth lock-exchange experiments were performed. We employ an innovative image analysis technique based on light reflection to evaluate the instantaneous density fields. To apply the light attenuation technique and visualize the dense fluid, a controlled quantity of dye was introduced into the saline water. A calibration method was used to establish the correlation between light intensity and dye concentration for each pixel in the captured images. The conducted study clearly illustrates that an adequate height of obstacles results in a substantial portion of denser fluid being impeded by the foremost obstacle in an array. Additionally, transitioning from densified to less-densified array geometries induces distinct changes in flow morphologies. Upon concluding the analysis of this study, it is evident that all the experiments are affected by the presence of substantial bottom roughness.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要