WRF-SUEWS Coupled System: Development and Prospect

Ting Sun,Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang,Simone Kotthaus,Helen Ward, Zhiwen Luo,Sue Grimmond

crossref(2024)

引用 0|浏览4
暂无评分
摘要
We present the coupling of the Surface Urban Energy and Water Scheme (SUEWS) into the Weather Research and Forecasting (WRF) model, which includes pre-processing to capture spatial variability in surface characteristics. Fluxes and mixed layer height observations from southern UK were utilised to assess the WRF-SUEWS system over two-week periods across different seasons. Mean absolute errors are lower in residential Swindon compared to central London for turbulent sensible and latent heat fluxes (QH, QE), with increased accuracy on clear days at both locations. The model's performance exhibits clear seasonality, showing enhanced precision for QH and QE during autumn and winter due to more frequent clear days than in spring and summer. Using the coupled system, we explored how anthropogenic heat flux emissions affect boundary layer dynamics by contrasting areas with varying human activities within Greater London; higher emissions not only raise mixed layer heights but also create a warmer, drier near-surface atmosphere. Future updates will align the coupled system with the latest SUEWS version, focusing on detailed surface-layer diagnostics that can support various urban climate applications such as building energy modelling and human thermal comfort assessments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要