Global South most affected by socio-ecosystem productivity decline due to compound heat and flash droughts

crossref(2024)

引用 0|浏览2
暂无评分
摘要
Flash droughts (FDs) and heatwaves are posing disproportionate biophysical and social losses worldwide, particularly threatening the disadvantaged communities in the Global South. However, the underlying physical mechanisms behind compound heat-flash drought (CHFD) events and their impacts on global socio-ecosystem productivity remain elusive. Here using satellites, reanalysis, reconstructions, and field measurements, we find more dry regions (53%~62%) with above-average ratios of FDs accompanied by extreme heat than humid regions (50%~57%), due to asymmetric effects by synoptic weather systems. The CHFDs associated with strong soil moisture-temperature coupling aggravate the constraint on plant photosynthesis in dry regions, whereas this coupling-related vegetation stress is not significant in humid regions. We further develop a global risk framework that integrates CHFD hazards, population/agriculture exposures, and vulnerability, and find the Global South is the primary region affected by CHFDs, contributing to greater-than-usual carbon uptake reduction, 90%~94% and 76%~86% of risks to world population and agriculture over the past four decades. We reveal the Global South is severely affected by the impacts of CHFDs on socio-ecosystem productivity decline and underscore the importance of efforts to monitor, predict, and mitigate the rise in CHFDs. 
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要