Laser induced temperature-jump time resolved IR spectroscopy of zeolites

Alexander P. Hawkins, Amy E. Edmeades, Christopher D. M. Hutchison,Michael Towrie,Russell F. Howe, Gregory M. Greetham,Paul M. Donaldson

CHEMICAL SCIENCE(2024)

引用 0|浏览0
暂无评分
摘要
Combining pulsed laser heating and time-resolved infrared (TR-IR) absorption spectroscopy provides a means of initiating and studying thermally activated chemical reactions and diffusion processes in heterogeneous catalysts on timescales from nanoseconds to seconds. To this end, we investigated single pulse and burst laser heating in zeolite catalysts under realistic conditions using TR-IR spectroscopy. 1 ns, 70 mu J, 2.8 mu m laser pulses from a Nd:YAG-pumped optical parametric oscillator were observed to induce temperature-jumps (T-jumps) in zeolite pellets in nanoseconds, with the sample cooling over 1-3 ms. By adopting a tightly focused beam geometry, T-jumps as large as 145 degrees C from the starting temperature were achieved, demonstrated through comparison of the TR-IR spectra with temperature dependent IR absorption spectra and three dimensional heat transfer modelling using realistic experimental parameters. The simulations provide a detailed understanding of the temperature distribution within the sample and its evolution over the cooling period, which we observe to be bi-exponential. These results provide foundations for determining the magnitude of a T-jump in a catalyst/adsorbate system from its absorption spectrum and physical properties, and for applying T-jump TR-IR spectroscopy to the study of reactive chemistry in heterogeneous catalysts. Laser heating of zeolites in combination with time-resolved IR spectroscopy is introduced as a means of studying chemical processes in heterogeneous catalysts from nanoseconds to seconds.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要