570 Wh kg-1-Grade Lithium Metal Pouch Cell with 4.9V Highly Li+ Conductive Armor-Like Cathode Electrolyte Interphase via Partially Fluorinated Electrolyte Engineering

ADVANCED MATERIALS(2024)

引用 0|浏览1
暂无评分
摘要
Lithium-rich manganese-based layered oxides (LRMOs) are promisingly used in high-energy lithium metal pouch cells due to high specific capacity/working voltage. However, the interfacial stability of LRMOs remains challenging. To address this question, a novel armor-like cathode electrolyte interphase (CEI) model is proposed for stabilizing LRMO cathode at 4.9 V by exploring partially fluorinated electrolyte formulation. The fluoroethylene carbonate (FEC) and tris (trimethylsilyl) borate (TMSB) in formulated electrolyte largely contribute to the formation of 4.9 V armor-like CEI with LiBxOy and LixPOyFz outer layer and LiF- and Li3PO4-rich inner part. Such CEI effectively inhibits lattice oxygen loss and facilitates the Li+ migration smoothly for guaranteeing LRMO cathode to deliver superior cycling and rate performance. As expected, Li||LRMO batteries with such electrolyte achieve capacity retention of 85.7% with high average Coulomb efficiency (CE) of 99.64% after 300 cycles at 4.8 V/0.5 C, and even obtain capacity retention of 87.4% after 100 cycles at higher cut-off voltage of 4.9 V. Meanwhile, the 9 Ah-class Li||LRMO pouch cells with formulated electrolyte show over thirty-eight stable cycling life with high energy density of 576 Wh kg(-1) at 4.8 V.
更多
查看译文
关键词
cathode electrolyte interphase,high-voltage batteries,lithium-rich manganese-based oxides,lithium metal batteries,partially fluorinated electrolyte
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要