Thin-walled deployable composite structures: A review

Progress in Aerospace Sciences(2024)

引用 0|浏览3
暂无评分
摘要
The elastic strain energy-driven thin-walled deployable composite structures, characterized by their integration of structure and functionality, have attracted considerable attention in the field of space applications. These structures utilize the stored strain energy accumulated during the folding process to achieve elastic deployment. Significant progress has been made in the understanding of deformation mechanisms, modeling, design, optimization, and applications of such structures based on existing research. This review critically discusses over 300 papers from the past few decades, providing a comprehensive exploration of the development of three representative types of deployable composite structures: deployable composite hinges, booms, and reflectors. Specifically, it starts by reviewing the structural design, functional mechanisms, theories, finite element modeling methods and experimental investigations for these three types of structures. It then introduces optimization design methods and their applications in deployable composite structures. Additionally, specific practical application cases of deployable composite structures are discussed. Finally, future challenges and prospects for deployable composite structures are outlined. This paper serves as a valuable reference and inspiration for the design and application of deployable composite structures. It is expected to promote further advancements in this field.
更多
查看译文
关键词
Deployable composite structure,Thin-walled,Boom,Tape-spring,Hinge,Reflector,Optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要