Antithermal Quenching Upconversion Luminescence via Suppressed Multiphonon Relaxation in Positive/Negative Thermal Expansion Core/Shell NaYF4:Yb/Ho@ScF3 Nanoparticles.

Yilin Wang, Jiahui Rui,Hao Song,Ze Yuan, Xiaoqiao Huang, Jingyao Liu,Jie Zhou,Ce Li,Hui Wang, Shuaihao Wu, Ran Chen,Mingdi Yang,Qilong Gao,Xiaoji Xie,Xianran Xing,Ling Huang

Journal of the American Chemical Society(2024)

引用 0|浏览3
暂无评分
摘要
Thermal quenching (TQ) has been naturally entangling with luminescence since its discovery, and lattice vibration, which is characterized as multiphonon relaxation (MPR), plays a critical role. Considering that MPR may be suppressed under exterior pressure, we have designed a core/shell upconversion luminescence (UCL) system of α-NaYF4:Yb/Ln@ScF3 (Ln = Ho, Er, and Tm) with positive/negative thermal expansion behavior so that positive thermal expansion of the core will be restrained by negative thermal expansion of the shell when heated. This imposed pressure on the crystal lattice of the core suppresses MPR, reduces the amount of energy depleted by TQ, and eventually saves more energy for luminescing, so that anti-TQ or even thermally enhanced UCL is obtained.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要