Algorithmically Fair Maximization of Multiple Submodular Objective Functions

CoRR(2024)

引用 0|浏览7
暂无评分
摘要
Constrained maximization of submodular functions poses a central problem in combinatorial optimization. In many realistic scenarios, a number of agents need to maximize multiple submodular objectives over the same ground set. We study such a setting, where the different solutions must be disjoint, and thus, questions of fairness arise. Inspired from the fair division literature, we suggest a simple round-robin protocol, where agents are allowed to build their solutions one item at a time by taking turns. Unlike what is typical in fair division, however, the prime goal here is to provide a fair algorithmic environment; each agent is allowed to use any algorithm for constructing their respective solutions. We show that just by following simple greedy policies, agents have solid guarantees for both monotone and non-monotone objectives, and for combinatorial constraints as general as p-systems (which capture cardinality and matroid intersection constraints). In the monotone case, our results include approximate EF1-type guarantees and their implications in fair division may be of independent interest. Further, although following a greedy policy may not be optimal in general, we show that consistently performing better than that is computationally hard.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要