Forest Canopy Height Estimation by Integrating Structural Equation Modeling and Multiple Weighted Regression

FORESTS(2024)

引用 0|浏览1
暂无评分
摘要
As an important component of forest parameters, forest canopy height is of great significance to the study of forest carbon stocks and carbon cycle status. There is an increasing interest in obtaining large-scale forest canopy height quickly and accurately. Therefore, many studies have aimed to address this issue by proposing machine learning models that accurately invert forest canopy height. However, most of the these approaches feature PolSAR observations from a data-driven viewpoint in the feature selection part of the machine learning model, without taking into account the intrinsic mechanisms of PolSAR polarization observation variables. In this work, we evaluated the correlations between eight polarization observation variables, namely, T11, T22, T33, total backscattered power (SPAN), radar vegetation index (RVI), the surface scattering component (Ps), dihedral angle scattering component (Pd), and body scattering component (Pv) of Freeman-Durden three-component decomposition, and the height of the forest canopy. On this basis, a weighted inversion method for determining forest canopy height under the view of structural equation modeling was proposed. In this study, the direct and indirect contributions of the above eight polarization observation variables to the forest canopy height inversion task were estimated based on structural equation modeling. Among them, the indirect contributions were generated by the interactions between the variables and ultimately had an impact on the forest canopy height inversion. In this study, the covariance matrix between polarization variables and forest canopy height was calculated based on structural equation modeling, the weights of the variables were calculated by combining with the Mahalanobis distance, and the weighted inversion of forest canopy height was carried out using PSO-SVR. In this study, some experiments were carried out using three Gaofen-3 satellite (GF-3) images and ICESat-2 forest canopy height data for some forest areas of Gaofeng Ridge, Baisha Lizu Autonomous County, Hainan Province, China. The results showed that T11, T33, and total backscattered power (SPAN) are highly correlated with forest canopy height. In addition, this study showed that determining the weights of different polarization observation variables contributes positively to the accurate estimation of forest canopy height. The forest canopy height-weighted inversion method proposed in this paper was shown to be superior to the multiple regression model, with a 26% improvement in r and a 0.88 m reduction in the root-mean-square error (RMSE).
更多
查看译文
关键词
forest canopy height,GF-3,ICESat-2,structural equation modeling,PSO-SVR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要