Deep Individual Active Learning: Safeguarding against Out-of-Distribution Challenges in Neural Networks

ENTROPY(2024)

引用 0|浏览0
暂无评分
摘要
Active learning (AL) is a paradigm focused on purposefully selecting training data to enhance a model's performance by minimizing the need for annotated samples. Typically, strategies assume that the training pool shares the same distribution as the test set, which is not always valid in privacy-sensitive applications where annotating user data is challenging. In this study, we operate within an individual setting and leverage an active learning criterion which selects data points for labeling based on minimizing the min-max regret on a small unlabeled test set sample. Our key contribution lies in the development of an efficient algorithm, addressing the challenging computational complexity associated with approximating this criterion for neural networks. Notably, our results show that, especially in the presence of out-of-distribution data, the proposed algorithm substantially reduces the required training set size by up to 15.4%, 11%, and 35.1% for CIFAR10, EMNIST, and MNIST datasets, respectively.
更多
查看译文
关键词
active learning,universal prediction,deep active learning,individual sequences,normalized maximum likelihood,out-of-distribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要